A semantic self-organising webpage-ranking algorithm using computational geometry across different knowledge domains

نویسندگان

  • Marios Poulos
  • Sozon Papavlasopoulos
  • Vassilios S. Belesiotis
  • Nikolaos Korfiatis
چکیده

In this paper we introduce a method for Web page-ranking, based on computational geometry to evaluate and test by examples, order relationships among web pages belonging to different knowledge domains. The goal is, through an organising procedure, to learn from these examples a real-valued ranking function that induces ranking via a convexity feature. We consider the problem of self-organising learning from numerical data to be represented by a well-fitted convex polygon procedure, in which the vertices correspond to descriptors representing domains of web pages. Results and Statistical evaluation of procedure show that the proposed method may be characterised as accurate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using a Semantic Self-Organising Web Page-Ranking Mechanism for Public Administration and Education

In the proposed method for Web page-ranking, a novel theoretic model is introduced and tested by examples of order relationships among IP addresses. Ranking is induced using a convexity feature, which is learned according to these examples using a self-organizing procedure. We consider the problem of selforganizing learning from IP data to be represented by a semi-random convex polygon procedur...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Learning robot actions based on self-organising language memory

In the MirrorBot project we examine perceptual processes using models of cortical assemblies and mirror neurons to explore the emergence of semantic representations of actions, percepts and concepts in a neural robot. The hypothesis under investigation is whether a neural model will produce a life-like perception system for actions. In this context we focus in this paper on how instructions for...

متن کامل

Cross-Document Co-Reference Resolution using Sample-Based Clustering with Knowledge Enrichment

Identifying and linking named entities across information sources is the basis of knowledge acquisition and at the heart of Web search, recommendations, and analytics. An important problem in this context is cross-document coreference resolution (CCR): computing equivalence classes of textual mentions denoting the same entity, within and across documents. Prior methods employ ranking, clusterin...

متن کامل

Self-organisation of Language Instruction for Robot Action Control

Most current approaches for robot control do not make use of language and ignore neural learning. However, our robot control approach uses language instruction and draws from the concepts of regional distributed modularity, mirror neuron theory and neural assemblies. We describe a self-organising model that clusters action verbs into different locations of the output layer dependent on the body...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Knowledge and Web Intelligence

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009